The science of combining molecular building blocks by strong bonds to form crystalline open frameworks, known as reticular chemistry, has greatly enlarged the range of chemical compounds and materials available. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are examples of how this chemistry is applied and show the molecular-level control over matter. Reticular chemistry is concerned with the use of strong bonds to bind molecular building pieces into specific configurations. The materials that are frequently the targets of reticular synthesis are thermally resistant and porous materials.
Title : Application of metal Single-Site zeolite catalysts in catalysis
Stanislaw Dzwigaj, Sorbonne-Universite-CNRS, France
Title : Advanced concepts for ultra- high conversion efficiency of solar photons into photovoltaics and solar fuels based on quantization effects in nanostructures and molecular singlet fission
Arthur J Nozik, University of Colorado, United States
Title : Application of switchable solvent catalysts for biodiesel synthesis using a novel electrochemical approach
Beyene Hagos Aregawi, National Taiwan University of Science and Technology, Taiwan
Title : Evidence for formation of iron oxide nanoparticles into the mechanistic of the Thermal DecomposiAmmoniump perchlorate using ferrocenyl compounds derived from 1,2,3-triazolyl ligand as burning rate catalysts
Cesar Morales Verdejo, Bernardo O'Higgins University, Chile
Title : Advancements in catalyst modeling and simulation
Tianxing cai, Lamar University, United States
Title : Antibody-proteases as translational tools of the next-step generation to be applied through bio design-driven translational biotech in personalized an precision neurology practice
Sergey Suchkov, Institute for Biotech & Global Health of Rosbiotech and A.I. Evdokimov MGMSU, United States