HYBRID EVENT: You can participate in person at Boston, Massachusetts, USA or Virtually from your home or work.

Salvatore Geraci

Catalysis 2023
Salvatore Geraci, Speaker at Chemistry Conferences
University of Palermo, Italy
Title : Performance of Nickel-Iron nanostructured electrodes at different temperatures


In recent years, the whole world has been trying to reduce CO2 emissions through the global decarbonization of energy processes. In this view, the interest in green hydrogen has drastically increased. One way to produce green hydrogen is by water electrolysis using only electricity from renewable sources. The storage of renewable solar or wind electricity is a major challenge to building a sustainable future energy system. The electrochemical production of hydrogen, through electrolyzers, is a viable strategy to take advantage of the surplus electricity coming from renewable energy sources. Its production is pollution-free but is not economically viable. The development of more efficient electrolyzers with low-cost electrode materials plays a key role. Catalysts must have such as good electrocatalytic properties, high conductivity, high availability, low cost, and good chemical stability. Nowadays, research is focused on improving Alkaline Water Electrolysis (AE) to reduce the cost of electrode production. In the alkaline environment, it was demonstrated that transition metals, and in particular Nickel or nickel-based alloy nanostructured electrodes, have good and stable performances. Furthermore, industrial alkaline electrolyzers work at temperatures between 40 and 90°C. Therefore, electrodes must be mechanically and chemically stable at these temperatures.

An approach to improve AE performance consists of the fabrication of nanostructured electrodes because they are characterized by high electrocatalytic activity due to the very high surface area.

Starting from the results obtained in previous work, the nanostructured alloy of NiFe was tested both as cathode and anode at three different temperatures (25 °C, 40 °C, 60 °C). Nanostructured electrodes were obtained through a simple and cheap method, template electrosynthesis, using a polycarbonate membrane as a template. NiFe electrode morphology was studied by scanning electrode microscopy (SEM) and their composition was evaluated by energy diffraction spectroscopy (EDS) analyses. Later, the electrodes were characterized using various electrochemical techniques: Cyclic Voltammetry (CV), Quasi Steady State Polarization (QSSP) and Galvanostatic Step. To evaluate the mid-term behavior of the electrodes, especially at high temperatures, a constant current density was applied for 6 hours. In particular, -50 mA cm-2  for Hydrogen Evolution Reaction (HER) and 50 mA cm-2 for Oxygen Evolution Reaction (OER).

All the tests were performed in 30% w/w KOH aqueous solution. Temperature increase plays a key role in increasing the efficiency of both anode and cathode reactions. As expected, the best result was obtained at 60 °C.

Audience Take Away:

  • Fabrication of Nanostructured electrodes obtained with electrochemical deposition.
  • Template deposition can provide advantages for the fabrication of highly complex structures.
  • Electrochemical deposition in template is an easygoing method to produce nanostructures because it allows to adjust main parameters, controlling their final features.
  • Electrochemical process can be easily scaled-up from laboratory to industry.


Salvatore Geraci studied Chemical Engineering at the University of Palermo, Italy and graduated as Process Chemical Engineer in 2022. He started the PhD Course in Chemical, environmental, biomedical, hydraulic and materials engineering in 2023 in the same university and joined the research group of Prof. Rosalinda Inguanta in the applied physical chemistry laboratory.